ತ್ರಿಕೋನಮಿತಿಯ ಪ್ರಸ್ತಾವನೆ
ಮಾದರಿ ಪ್ರಶ್ನೆಗಳು
ಎರಡು ಅಂಕದ ಪ್ರಶ್ನೆಗಳು
ಉತ್ತರ:
sin² A + cos² A = 1
0 + cos² A = 1
cos² A = 1
cos A = √1
cos A = 1
sin² A + cos² A = 1
0 + cos² A = 1
cos² A = 1
cos A = √1
cos A = 1
ಉತ್ತರ:
sec θ =
=
=
sec θ =
1
/
Cos θ
=
1
/
24⁄25
=
25
/
24
ಉತ್ತರ:
sec² 26° – tan² 26°
tan² A + 1 = sec² A
= tan² 26° + 1 – tan² 26°
= 1
sec² 26° – tan² 26°
tan² A + 1 = sec² A
= tan² 26° + 1 – tan² 26°
= 1
ಉತ್ತರ:
tan 45° + cot 45° = 1 + 1
tan 45° + cot 45° = 2
tan 45° + cot 45° = 1 + 1
tan 45° + cot 45° = 2
ಉತ್ತರ:
sin A . cos A . tan A + cos A . sin A . cot A
= sin A . cos A .
{ tan A =
= sin A . sin A + cos A . cos A {sin² A + cos² A = 1}
= sin² A + cos² A
= 1
sin A . cos A . tan A + cos A . sin A . cot A
= sin A . cos A .
sin A
/
cos A
+ cos A . sin A .
cos A
/
sin A
{ tan A =
sin A
/
cos A
, cot A =
cos A
/
sin A
}= sin A . sin A + cos A . cos A {sin² A + cos² A = 1}
= sin² A + cos² A
= 1
ಉತ್ತರ:
(1 + tan² 60°)² = (1 + (√3)²)² {tan 60° = √3 }
= (1 + 3)²
= 4²
= 16
(1 + tan² 60°)² = (1 + (√3)²)² {tan 60° = √3 }
= (1 + 3)²
= 4²
= 16
ಉತ್ತರ:
Sin θ =
Cosec θ =
3 cosec θ = 3 *
3 cosec θ = 5
Sin θ =
3
/
5
Cosec θ =
5
/
3
{cosec θ =
1
/
Sin θ
}3 cosec θ = 3 *
5
/
3
3 cosec θ = 5
ಉತ್ತರ:
2 tan² 45° + cos² 30° – sin² 60°
= 2(1)² + (√3⁄2)² - (√3⁄2)²
= 2 +
= 2
2 tan² 45° + cos² 30° – sin² 60°
= 2(1)² + (√3⁄2)² - (√3⁄2)²
= 2 +
3
/
4
-
3
/
4
= 2
ಉತ್ತರ:
tan 48° * tan 23° * tan 42° * tan 67°
= tan 48° * cot (90°- 42°) * tan 67°* cot (90°- 23°) { cot (90°- θ) = tanθ}
= tan 48° * cot 48° * tan 67° * cot 67°
= tan 48° *
= 1
tan 48° * tan 23° * tan 42° * tan 67°
= tan 48° * cot (90°- 42°) * tan 67°* cot (90°- 23°) { cot (90°- θ) = tanθ}
= tan 48° * cot 48° * tan 67° * cot 67°
= tan 48° *
1
/
tan 48°
* tan 67° *
1
/
tan 67°
= 1 * 1 {cot θ =
1
/
tan θ
}= 1
ಉತ್ತರ :
sin 30° = cos 60° =
tan 45° = 1
cosec 60° = sec 30° =
=
sin 30° = cos 60° =
1
/
2
tan 45° = 1
cosec 60° = sec 30° =
2
/
√3
(sin 30 + tan 45 - cosec 60)
/
(sec 30 + cos 60 + cot 45)
=
1
/
2
+ 1 -
2
/
√3
/
2
/
√3
+
1
/
2
+ 1
=
3√3-2
/
4+3√3
ಉತ್ತರ :
1 - sin² A = cos² A
1 - tan² A = sec² A
(1 - sin² A)(1 - tan² A) = cos² A * sec² A
= cos² A *
= 1
1 - sin² A = cos² A
1 - tan² A = sec² A
(1 - sin² A)(1 - tan² A) = cos² A * sec² A
= cos² A *
1
/
cos² A
{sec² A =
1
/
cos² A
} = 1
ಉತ್ತರ :
Sin 30° =
cos 60° =
tan 45° = 1
Sin 30° x cos 60° – tan² 45° =
=
Sin 30° =
1
/
2
cos 60° =
1
/
2
tan 45° = 1
Sin 30° x cos 60° – tan² 45° =
1
/
2
x
1
/
2
- 1²
1
/
4
- 1=
-3
/
4
ಉತ್ತರ :
=
=
=
= sec² θ + tan² θ + 2 *
= sec² θ + tan² θ + 2 * tan θ * sec θ
= (sec θ + tan θ)²
(1+sin θ)
/
(1-sin θ)
=
(1+sin θ)
/
(1-sin θ)
*
(1+sin θ)
/
(1+sinθ)
=
(1+sin θ)²
/
(1-sin² θ)
=
(1+2sin θ+sin² θ)
/
cos² θ)
=
1
/
cos² θ
+
sin² θ
/
cos² θ
+
2sin θ
/
cos² θ
= sec² θ + tan² θ + 2 *
1
/
cos θ
*
sin θ
/
cos θ)
= sec² θ + tan² θ + 2 * tan θ * sec θ
= (sec θ + tan θ)²
ಉತ್ತರ:
√3 tan θ = 1
tan θ =
tan θ = tan 30° θ = 30°
sin 3θ + cos 2θ = sin (3*30) + cos (2*30)
= sin 90° + cos 60°
= 1 +
= 3/2
√3 tan θ = 1
tan θ =
1
/
√3
tan θ = tan 30° θ = 30°
sin 3θ + cos 2θ = sin (3*30) + cos (2*30)
= sin 90° + cos 60°
= 1 +
1
/
2
{sin 90° = 1, cos60° =
1
/
2
}= 3/2
ಉತ್ತರ:
(tan A * sin A ) + cos A =
=
{sin² A + cos² A = 1}
=
= sec A
(tan A * sin A ) + cos A =
sin A
/
cos A
* sin A + cos A=
sin² A
/
cos A
+ cos A
=
sin² A + cos² A
/
cos A
{sin² A + cos² A = 1}
=
1
/
cos A
= sec A
ಉತ್ತರ:
∆ABC ಯಲ್ಲಿ ∠B = 90°
ಫೈಥಾಗೊರಸ್ ಪ್ರಮೇಯದ ಪ್ರಕಾರ,
AC² = AB² + BC²
4² = AB² + 3²
16 = AB² + 9
16 - 9 = AB²
7 = AB²
AB = √7
COS A =
COS A =
∆ABC ಯಲ್ಲಿ ∠B = 90°
ಫೈಥಾಗೊರಸ್ ಪ್ರಮೇಯದ ಪ್ರಕಾರ,
AC² = AB² + BC²
4² = AB² + 3²
16 = AB² + 9
16 - 9 = AB²
7 = AB²
AB = √7
COS A =
AB
/
BC
COS A =
√3
/
4
ಉತ್ತರ:
∆ABC ಯಲ್ಲಿ ∠B = 90°
ಆದ್ದರಿಂದ ಪೈಥಾಗೊರಸ್ ಪ್ರಮೇಯ ಪ್ರಕಾರ,
AC² = AB² + BC²
169 = 25 + BC²
169 – 25 = BC²
144 = BC² , BC² = √144 , BC = 12
cos θ =
tan θ =
∆ABC ಯಲ್ಲಿ ∠B = 90°
ಆದ್ದರಿಂದ ಪೈಥಾಗೊರಸ್ ಪ್ರಮೇಯ ಪ್ರಕಾರ,
AC² = AB² + BC²
169 = 25 + BC²
169 – 25 = BC²
144 = BC² , BC² = √144 , BC = 12
cos θ =
ಪಾರ್ಶ್ವ ಬಾಹು
/
ವಿಕರ್ಣ
=
BC
/
AC
=
12
/
13
tan θ =
ಅಬಿಮುಖ ಬಾಹು
/
ಪಾರ್ಶ್ವ ಬಾಹು
=
AB
/
BC
=
5
/
12
ಮೂರು ಅಂಕದ ಪ್ರಶ್ನೆಗಳು
ಉತ್ತರ:
(sin θ + cosse θ)² + (cos θ + sec θ)²
= sin² θ + 2 x sin θ x cosec θ + cosec² θ + cos² θ + 2 x cos θ x sec θ + sec² θ
= sin² θ + 2 x sinθ x
{ cosec θ =
= sin² θ + 2 + cosec² θ + cos² θ + 2 + sec² θ
= sin² θ + cos² θ + 2 + 2 + cosec² θ + sec² θ
{ (1+tan²θ) = sec²θ, (1+cot²θ) = cosec²θ, sin² θ + cos² θ = 1 }
= 1 + 2 + 2 + 1 + cot² θ + 1 + tan² θ
= 1 + 2 + 2 + 1 + 1 + cot² θ + tan² θ
= 7 + cot² θ + tan² θ
(sin θ + cosse θ)² + (cos θ + sec θ)²
= sin² θ + 2 x sin θ x cosec θ + cosec² θ + cos² θ + 2 x cos θ x sec θ + sec² θ
= sin² θ + 2 x sinθ x
1
/
sin θ
+ cosec² θ + cos² θ + 2 x cosθ x
1
/
cos θ
+ sec² θ { cosec θ =
1
/
sin θ
sec θ =
1
/
cos θ
}= sin² θ + 2 + cosec² θ + cos² θ + 2 + sec² θ
= sin² θ + cos² θ + 2 + 2 + cosec² θ + sec² θ
{ (1+tan²θ) = sec²θ, (1+cot²θ) = cosec²θ, sin² θ + cos² θ = 1 }
= 1 + 2 + 2 + 1 + cot² θ + 1 + tan² θ
= 1 + 2 + 2 + 1 + 1 + cot² θ + tan² θ
= 7 + cot² θ + tan² θ
ಉತ್ತರ:
cos (A+B) = cos (60°+30°)
= cos 90°
= 0
cos A . cos B - sin A . sin B
= cos 60° . cos 30° - sin 60° . sin 30°
=
= 0
cos (A+B) = cos A . cos B - sin A . sin B
cos (A+B) = cos (60°+30°)
= cos 90°
= 0
cos A . cos B - sin A . sin B
= cos 60° . cos 30° - sin 60° . sin 30°
=
1
/
2
*
√3
/
2
-
√3
/
2
*
1
/
2
√3
/
4
-
√3
/
4
= 0
cos (A+B) = cos A . cos B - sin A . sin B
ಉತ್ತರ:
=
=
=
=
=
=
=
= 2 cosec θ
sin θ
/
1+cos θ
+
1+cosθ
/
sin θ
=
sin θ x sin θ + (1 + cos θ)(1 + cos θ)
/
sin θ (1 + cos θ)
=
sin² θ + (1 + cos θ)²
/
sin θ (1 + cos θ)
=
sin² θ + 1 + cos² θ + 2 x 1 x cos θ)
/
sin θ (1 + cos θ)
=
sin² θ + cos² θ + 1 + 2 cos θ)
/
sin θ (1 + cos θ)
=
1 + 1 + 2 cos θ)
/
sin θ (1 + cos θ)
=
2(1 + cos θ)
/
sin θ (1 + cos θ)
=
2
/
sin θ
= 2 cosec θ
ಉತ್ತರ:
=
=
=
= tan² θ
(1-tan² θ)
/
(cot² θ - 1)
=
1 -
sin² θ
/
cos² θ
/
cos² θ
/
sin² θ
- 1
=
cos² θ - sin² θ
/
cos² θ
/
cos² θ - sin² θ
/
sin² θ
=
sin² θ
/
cos² θ
= tan² θ
ಉತ್ತರ:
tan² θ - sin² θ
=
=
=
=
= tan² θ x sin² θ
tan² θ - sin² θ
=
sin² θ
/
cos² θ
- sin² θ =
(sin² θ - sin² θ cos² θ)
/
cos² θ
=
(sin² θ x (1-cos² θ))
/
cos² θ
=
sin²
/
cos² θ
x sin² θ = tan² θ x sin² θ
ಉತ್ತರ:
sin (90-θ) = cos θ
cosec (90-θ) = sec θ
cot (90-θ) = tan θ
=
=
=
=
=
=
= 1 + sin θ
sin (90-θ) = cos θ
cosec (90-θ) = sec θ
cot (90-θ) = tan θ
sin (90-θ)
/
(cosec (90-θ) - cot (90-θ) )
=
cos θ
/
sec θ - tan θ
=
cos θ
/
1
/
cos θ
-
sin θ
/
cos θ
=
cos θ
/
1 - sin θ
/
cos θ
=
cos² θ
/
1 - sin θ
=
1 - sin² θ
/
1 - sin θ
=
(1 - sin θ)(1 + sin θ)
/
1 - sin θ
= 1 + sin θ